

Root Server Operated by ICANN

DNS Engineering | DNS Symposium Madrid | May 2017

Root Server in a nutshell

+ **RSSAC 026**

- + Entry point to the *root server system*.
- + Authoritative name server that answer queries for the contents of the *root zone*.
- + **RFC 7720** (DNS Root Name Service Protocol and Deployment Requirements)
 - + Protocol Requirements:
 - core DNS functions (RFC 1035) and clarifications (RFC 2181)
 - IPv4 (RFC 791) and IPv6 (RFC 2460)
 - UDP (*RFC 768*) and TCP (*RFC 793*)
 - DNSSEC (RFC 4035)
 - DNS EDNS0 (RFC 6891)
 - + Deployment Requirements:
 - Valid IP Address (RFC 1122)
 - Unique Root Zone (RFC 2826)

Root Server operated by ICANN

- + ICANN operates one of the 13 Root Servers through its **DNS Engineering Team**
- + ASN 20144
 - + IPv4: **199.7.83.42** (/23 & /24)
 - + IPv6: 2001:500:9f::42 (/47 & /48)
 - + DNS label: **l.root-servers.net**
- + Anycasted since 2007
- + Renumbered IPv4 address in 2007 (old was 198.32.64.12)
- + Renumbered IPv6 address in 2016 (old was 2001:500:3::42)
 - + Still answering in old IPv6 address: <u>http://stats.dns.icann.org/plotcache/L-Root/server_addr/</u> 2017-04-30T23:41-2017-05-01T23:40-all.html

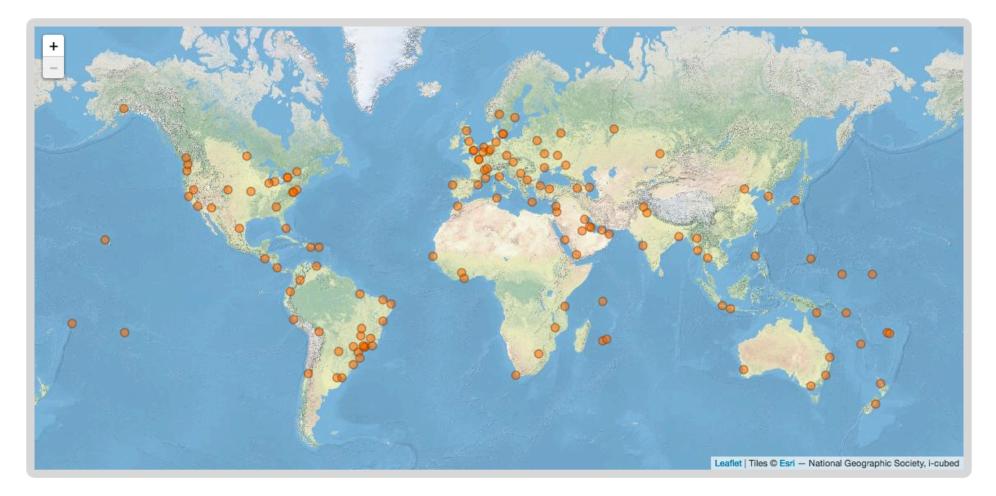
Operations

Architecture: Hardware

- + Current architecture is based on 2 different configurations
 - + Single Instances (3 server classes) hosted by ICANN partners
 - 156 instances (old and new version)
 - + 3 Clusters hosted by ICANN
 - 2 different versions
 - Made with many Singles

Architecture: Software

- + DNS Software used:
 - + Name Server Daemon (**NSD**) from NLnetLabs
 - + Knot DNS from CZ.NIC
- + BGP Routing Software used:
 - + Quagga (intention to move to BIRD)
 - + OpenBGP
- + OS systems used:
 - + Linux based Ubuntu
 - + Unix based FreeBSD


Geographical diversity via Anycast

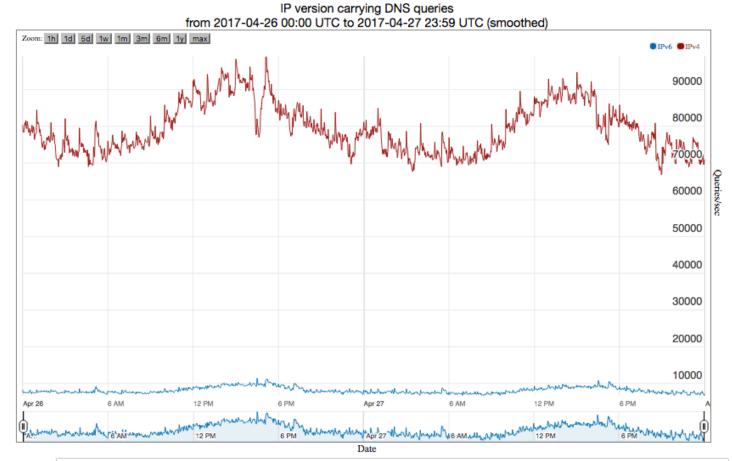
- Anycast allow multiple copies of a server to be on multiple places, allowing us to:
 - + Put the service closer to the user
 - + Lower RTT
 - + Improve user experience
 - + Increase query capacity
 - + Reduces the likelihood some types of attack traffic would affect the rest of the internet by keeping it closer to the source
 - + Flexibility to add/remove instances

Locations and world presence

http://lrootmap.dns.icann.org

Measuring Traffic and Statistics

- + DNS Stats (Hedgehog) http://stats.dns.icann.org
 - + Provides *near real-time* statistics for our Root Server instances
- + Some of the features available are:
 - + Query type, query attributes, aggregation, per second
 - + IP Protocol and Transport Protocol
- + Version **2.3.0** released on October, 2016
- + Looking into new version. Optimized DB and data input process
 - + Alternative to DSC Collector (able to gather more data)
- + Released to the community with a open license in August 2014. More information on http://www.dns-stats.org



DNS Stats

Ð

ICANN

Static Link http://stats.dns.icann.org/plotcache/L-Root/dns_ip_versior/2017-04-26T00:00-2017-04-27T23:59-all.html

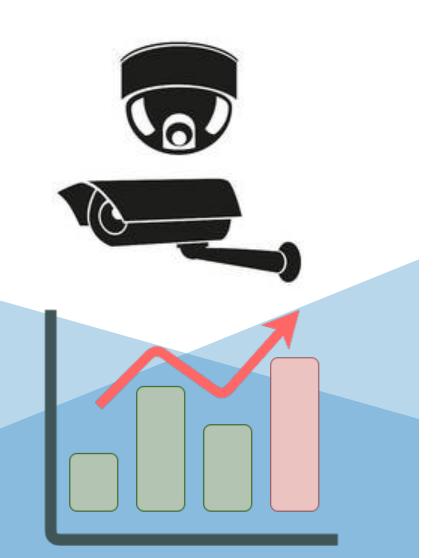
10

Mechanisms for the Identification of Anycast Nodes

- + HOSTNAME.BIND
- + ID.SERVER
- + NSID
- + RFC 7108
 - + IDENTITY.L.ROOT-SERVERS.ORG (TXT and A/AAAA Records)

\$ dig identity.l.root-servers.org TXT +short
"iad63.l.root-servers.org" "Reston" "Virginia"
"United States" "NorthAmerica"

- + NODES.L.ROOT-SERVERS.ORG (TXT Record)
 - + Will display a list of all the active Nodes for L-Root



Monitoring

- + External monitoring
 - + DNSMON, BGPMON, ThousandEyes

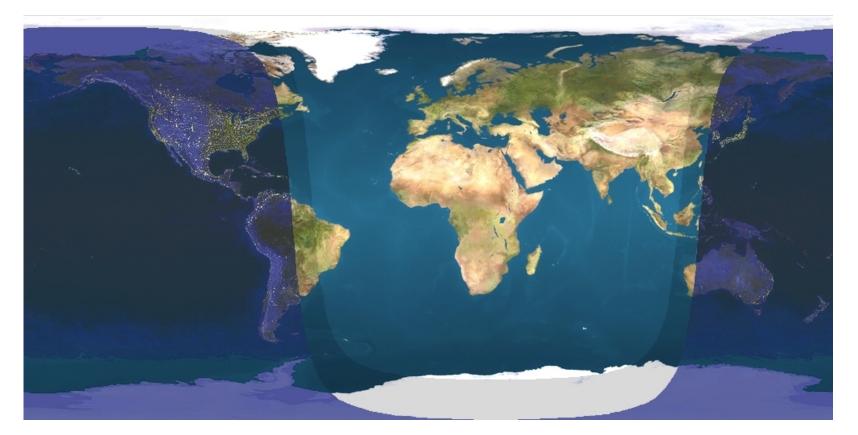
and more

- + Internal monitoring
 - + Zabbix
 - + Icinga
 - + DNS-Stats
 - + Nexpose
 - + A LOT of custom scripts

Hosting an instance in your network

Want to host an instance on your network?

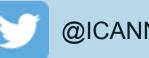
- + Pre-requisites:
 - + Your organization is willing to host a server instance managed by ICANN Your organization can provide all the following:
 - Sign a NDA and an ICANN Agreement
 - Purchase a hardware appliance (as spec'd by ICANN)
 - Provide housing for the appliance (hosting/power/v4 & v6 connectivity)
 - Ability to establish a BGP peering session to propagate AS20144 prefixes


Hosting an ICANN Root Server Workflow

- + If you can satisfy the prerequisites
- Your organization will need to contact your *ICANN GSE* local representative and complete a contact information document
 - + Your organization will then need to sign a NDA
 - + Your organization will then need to sign the contract
 - + Your organization will need to complete a technical form (addressing and routing details)
 - + ICANN will return the documents executed
 - + ICANN DNS Engineering team installs and commissions the appliances(s).

About ICANN DNS Engineering Team

- + DNS Engineering Team is part of ICANN IT Department
- + Currently distributed in 4 different Time Zones (follow-the-sun mode)


ICANN DNS Engineering team Goals

- + DNS **expertise** and excellence
- + Strengthen, diversity and **growth** of Root Server system worldwide
- + Collaboration within our peers
- + Best engineering process
- + Transparency and **documented** process

How to engage with ICANN DNS Engineering

- + Research bodies (DNS-OARC)
- + Network Operations (NANOG, LACNOG, AUSNOG, CENTR)
- + Standard bodies (IETF)
- + Participation on many different mailing lists
- + Social media (Website, Twitter)
- + https://dns.icann.org

@ICANNdnsEng

